新闻资讯

您的位置: > 首页 > 新闻资讯 > 复旦大学徐宇曦研究员团队:超小金属有机框架纳米晶的制备及其高效电化学储能

复旦大学徐宇曦研究员团队:超小金属有机框架纳米晶的制备及其高效电化学储能

发布时间:2018-04-03 访问次数:236次 来源:中国聚合物网 分享:

  金属有机框架 (MOF) 材料由于其具有高的比表面积和孔体积以及孔尺寸及结构易于调节而广泛的运用在能源和环境等诸多领域上。尤其是当 MOF 材料降低到纳米尺寸,其物理化学性质会发生巨大变化,因此制备超小 MOF 材料并将其运用于能源存储,对于解决当今能源问题具有重大的意义。但是当前制备超小纳米颗粒的方法如激光、电化学、焦耳热、原子 / 分子沉积等因其极端的反应条件或者对分子内在结构的要求均不适用于 MOF 材料。因此,寻找一种简单、环保、普适性的制备超小 MOF 材料的方法显得尤为重要。

图 1. 材料制备过程

  复旦大学徐宇曦研究员团队开发了一种简单的 “热辅助的空间限域粉化” 方法成功制备出 sub-5 nm 的超小 MOF 纳米晶。如图 1 所示,通过静电及络合作用,首先在氧化石墨烯 (GO) 表面生长尺寸分布均匀(~100 nm)的 MOF 颗粒;然后在其表面通过原位聚合方法包覆导电高分子材料(PPy);将所得的 GO/Co-MOFs/PPy(GCP)复合材料在 350 oC 空气中煅烧 2 h,就可以得到超薄氮掺杂碳 / 石墨烯(NC/G)层包覆的超小 MOF 纳米晶 (GCP350)。空间限域粉化过程中材料结构变化如图 2 所示。

图 2.(a)GCP,(b)GCP350 的 TEM 图;(c,d)GCP350 的 HRTEM 图(图 c 插图是纳米晶尺寸分布)。GCP350 的晶格结构(e),SEAD 图(f),及 mapping 图(g-i)。

该复合材料的独特结构使其具有以下优点:

(1)超小纳米晶具有较大的比表面积,可以显著地提高电解液与活性物质的接触面积,有效降低锂离子及电子传输距离;

(2)超小纳米晶可以提供更多的活性位点,有效提高活性材料利用率;

(3)超小纳米晶之间的空隙及表面包覆的 NC/G 可以有效缓解锂离子电池充放电过程中的体积变化,提高其循环稳定性;

(4)相互连通的导电多孔 NC/G 框架可以促进电子 / 离子在整个复合材料内部的高速传输。

图 3. 作为锂离子电池负极的电化学性能

  基于以上优点,该复合材料做为锂离子电池的自支撑负极展示出极好的电化学性能:在 0.1 A g-1 的电流密度下,可逆比容量高达 1301 mAh g-1;当电流密度提高到 40 A g-1,比容量依然达到 494 mAh g-1,显示出卓越的倍率性能;在 10 A g-1 电流密度下循环 2000 圈,容量保持率达到 98.6%,每圈比容量衰减速率仅为 0.0007%。该超小 MOF 纳米晶复合材料的电化学性能远远超过了之前报道的其它 MOF 锂电负极材料。

  该项工作提出了一种简捷的制备超小 MOF 纳米晶的方法。通过选择合适的包覆层及恰当的煅烧温度,该方法将可以应用于其它 MOF 材料,具有较好的普适性,为制备超小功能 MOF 材料及其在高效能源存储与转化方面的应用提供了新途径。该工作是徐宇曦团队在石墨烯 / MOF 功能复合物方面(Chem. Eur.-J., 2017, 23, 8358;ACS Nano, 2017, 11, 5140;J. Mater. Chem. A, 2018, DOI: 10.1039/C7TA11111H.)取得的又一进展,论文近期发表在期刊《ACS Nano》上。

  全文链接:https://pubs.acs.org/doi/abs/10.1021/acsnano.8b01488